Toggle navigation
首页
问答
文章
积分商城
专家
专区
更多专区...
文档中心
返回主站
搜索
提问
会员
中心
登录
注册
BME280
ssd1306
NXP-MCXN947
FRDM-MCXN947开发板之i2c应用
发布于 2024-04-24 23:51:26 浏览:436
订阅该版
[tocm] ## 介绍 ### MCXN947 NXP FRDM-MCXN947开发板是一款基于MCXN947 MCU的低成本评估板,MCU集成了双核Arm Cortex-M33微控制器和一个神经处理单元(NPU)。开发板由一个MCXN947控制器和一个64 Mbit外部串行闪存组成。该板还具有P3T1755DP I3C温度传感器,TJA1057GTK/3Z CAN PHY,以太网PHY, SDHC电路(卡槽为DNP), RGB LED,触摸板,高速USB,按钮,和MCU-Link调试接口。该板兼容Arduino屏蔽模块,Pmod板,mikroBUS。该板还支持摄像头模块和NXP低成本LCD模块PAR-LCD-S035 ![board-logo.PNG](https://oss-club.rt-thread.org/uploads/20240424/525a42d8662f6cda284bc7d61bde8a62.png.webp) ### 开箱视频 我通过参过RT-Thread社区的活动,拿到了京东的包裹,板子的开箱视频:[FRDM-MCXN947开发板开箱_哔哩哔哩_bilibili](https://www.bilibili.com/video/BV1wA4m1A7v9/?vd_source=d939b06c630702aeb499bac767324c8c) ### 开发环境 基本的开发资料有以下几个,软件包或者资料都可以在NXP官网、Keil的官网找到,插一句话,最近Keil免费了 1. MDK531 2. NXP.MCXN947_DFP.17.0.0 3. rt_vsnprintf_full-latest.zip开发包 4. 官方的文档:UM12018.pdf 5. RT-Thread GitHub仓库最新代码 开发环境搭建请参考视频:[FRDM-MCXN947开发板开发环境上手_哔哩哔哩_bilibili](https://www.bilibili.com/video/BV1LD421j7V1/?spm_id_from=333.999.0.0&vd_source=d939b06c630702aeb499bac767324c8c) ## 实验目的 最近南方地区都在下暴雨,气候闷热潮湿,人们出门都在时刻关注天气的变化情况;刚好这个时候RT-Thread社区给我送来一款包装精致的NXP开发板,让我手头上的BME280温湿度气压传感器有了用武之地;BME280采用i2c接口和主机通信,能实时监控室内、室外的温度、湿度、大气压情况,基于它我们能做很多工业、物联网、医疗、汽车方面的应用 ## 实验准备 我们需要准备以下材料 - NXP FRDM-MCXN947开发板 - 温湿度气压模块BME280 (i2c接口) - SSD1306 OLED模块(i2c接口) - 公母头杜邦线若干 ## 模块电路 ### 板载资源 本次实验是通过软件i2c + 硬件i2c方式来进行通信,软件i2c采用引脚P0_4 (SCL)和P0_5 (SDA) ,硬件i2c采用引脚P0_25 (SCL)和P0_24 (SDA),前者位于`J9`内侧的第8和第9引脚,后者位于`J2`外侧的第7和第5引脚,引脚图参考如下,注意不要接错 ![i2c引脚图.png](https://oss-club.rt-thread.org/uploads/20240424/4769dd41945b5bd11449f1603cf3d037.png.webp) ### 实物连接 软件i2c口接OLED SSD1306模块,硬件i2c口接BME280模块,电源VCC和GND在J8和J6上面都有,千万别接错了! ![实物连接图.jpg](https://oss-club.rt-thread.org/uploads/20240424/933fc5d40be54289c1afba65f06951ea.jpg.webp) ## 程序设计 ### 模块配置 克隆rt-thread官方仓库的代码,MCXN947板子的最小例程在`bsp\nxp\mcx\mcxn\frdm-mcxn947`目录下 ```bash git clone https://github.com/RT-Thread/rt-thread.git ``` 用RT-Thread Studio导入frdm-mcxn947工程,然后打开env工具 ![env工具.png](https://oss-club.rt-thread.org/uploads/20240424/2fe81c312ade7cf42d83397429aa7854.png.webp) 在env终端输入命令menuconfig,配置rt-thread工程 ![menuconfig.png](https://oss-club.rt-thread.org/uploads/20240424/2ab18f49928a723aea4938ab3f8a13e6.png.webp) 在`RT-Thread Components`下找到`Device Drivers`并`Select`进去,软件i2c引脚配置如下 ![软件i2c.png](https://oss-club.rt-thread.org/uploads/20240424/81db0a38cb64d05b9984f5d77b5de003.png.webp) 在`Hardware Drivers Config`下找到`On-chip Peripheral Drivers`并`Select`进去,硬件i2c引脚配置如下 ![硬件i2c.png](https://oss-club.rt-thread.org/uploads/20240424/6b7436db731ea0c3d6325449e147601b.png.webp) 找到`RT-Thread online packages` -> `peripheral libraries and drivers` -> `ssd1306`并`Select`进去,配置SSD1306模块,记得改掉I2c bus name和开启ssd1306的sample选项,这里名称为i2c2,和上面配置的软件i2c名称一致 ![ssd1306.png](https://oss-club.rt-thread.org/uploads/20240424/f2d04b19f50e09ad9b3b723e1a87eb57.png.webp) 配置完后通过`Exit`退出,先更新软件包,再导出为mdk5工程,然后用Keil5打开 ``` pkgs --update scons --target=mdk5 ``` ### 编译工程 需要注释一些代码确保编译通过 ssd1306_tests.h ![ssd1306_tests头文件.png](https://oss-club.rt-thread.org/uploads/20240424/351cbd3da9cc998dd701dba293606bdd.png.webp) ssd1306.h ![ssd1306头文件.png](https://oss-club.rt-thread.org/uploads/20240424/df22b47a8a1609e6ae0bd17a0f0572ef.png.webp) ### 编码集成 #### SSD1306 调用初始化接口并设置背景为黑色 ```c ssd1306_Init(); ssd1306_Fill(Black); ``` 绘图接口示范,先往buffer里边填字符串数据,然后设置坐标,再绘制字符 ```c rt_memset(buffer, SIZE, 0); rt_snprintf(buffer, SIZE, "Temp : %d'C\r\n",(int)temp_act); ssd1306_SetCursor(2, 26); ssd1306_WriteString(buffer, Font_6x8, White); ``` #### BME280 `readCalibrationData`、`calibration_T`、`calibration_P`、`calibration_H`用于读取和校准BME280的数据 ```c static unsigned long int hum_raw,temp_raw,pres_raw; static rt_uint8_t data[8]; static signed long int t_fine; static uint16_t dig_T1; static int16_t dig_T2; static int16_t dig_T3; static uint16_t dig_P1; static int16_t dig_P2; static int16_t dig_P3; static int16_t dig_P4; static int16_t dig_P5; static int16_t dig_P6; static int16_t dig_P7; static int16_t dig_P8; static int16_t dig_P9; static int8_t dig_H1; static int16_t dig_H2; static int8_t dig_H3; static int16_t dig_H4; static int16_t dig_H5; static int8_t dig_H6; static signed long int temp_cal; static unsigned long int press_cal,hum_cal; static double temp_act; static double press_act; static double hum_act; static void readCalibrationData() { uint8_t data[32]; read_bme280_reg(0x88, data, 24); read_bme280_reg(0xa1, data + 24, 1); read_bme280_reg(0xe1, data + 25, 7); dig_T1 = (data[1] << 8) | data[0]; dig_T2 = (data[3] << 8) | data[2]; dig_T3 = (data[5] << 8) | data[4]; dig_P1 = (data[7] << 8) | data[6]; dig_P2 = (data[9] << 8) | data[8]; dig_P3 = (data[11]<< 8) | data[10]; dig_P4 = (data[13]<< 8) | data[12]; dig_P5 = (data[15]<< 8) | data[14]; dig_P6 = (data[17]<< 8) | data[16]; dig_P7 = (data[19]<< 8) | data[18]; dig_P8 = (data[21]<< 8) | data[20]; dig_P9 = (data[23]<< 8) | data[22]; dig_H1 = data[24]; dig_H2 = (data[26]<< 8) | data[25]; dig_H3 = data[27]; dig_H4 = (data[28]<< 4) | (0x0F & data[29]); dig_H5 = (data[30] << 4) | ((data[29] >> 4) & 0x0F); dig_H6 = data[31]; } static signed long int calibration_T(signed long int adc_T) { signed long int var1, var2, T; var1 = ((((adc_T >> 3) - ((signed long int)dig_T1<<1))) * ((signed long int)dig_T2)) >> 11; var2 = (((((adc_T >> 4) - ((signed long int)dig_T1)) * ((adc_T>>4) - ((signed long int)dig_T1))) >> 12) * ((signed long int)dig_T3)) >> 14; t_fine = var1 + var2; T = (t_fine * 5 + 128) >> 8; return T; } static unsigned long int calibration_P(signed long int adc_P) { signed long int var1, var2; unsigned long int P; var1 = (((signed long int)t_fine)>>1) - (signed long int)64000; var2 = (((var1>>2) * (var1>>2)) >> 11) * ((signed long int)dig_P6); var2 = var2 + ((var1*((signed long int)dig_P5))<<1); var2 = (var2>>2)+(((signed long int)dig_P4)<<16); var1 = (((dig_P3 * (((var1>>2)*(var1>>2)) >> 13)) >>3) + ((((signed long int)dig_P2) * var1)>>1))>>18; var1 = ((((32768+var1))*((signed long int)dig_P1))>>15); if (var1 == 0) { return 0; } P = (((unsigned long int)(((signed long int)1048576)-adc_P)-(var2>>12)))*3125; if(P<0x80000000) { P = (P << 1) / ((unsigned long int) var1); } else { P = (P / (unsigned long int)var1) * 2; } var1 = (((signed long int)dig_P9) * ((signed long int)(((P>>3) * (P>>3))>>13)))>>12; var2 = (((signed long int)(P>>2)) * ((signed long int)dig_P8))>>13; P = (unsigned long int)((signed long int)P + ((var1 + var2 + dig_P7) >> 4)); return P; } static unsigned long int calibration_H(signed long int adc_H) { signed long int v_x1; v_x1 = (t_fine - ((signed long int)76800)); v_x1 = (((((adc_H << 14) -(((signed long int)dig_H4) << 20) - (((signed long int)dig_H5) * v_x1)) + ((signed long int)16384)) >> 15) * (((((((v_x1 * ((signed long int)dig_H6)) >> 10) * (((v_x1 * ((signed long int)dig_H3)) >> 11) + ((signed long int) 32768))) >> 10) + (( signed long int)2097152)) * ((signed long int) dig_H2) + 8192) >> 14)); v_x1 = (v_x1 - (((((v_x1 >> 15) * (v_x1 >> 15)) >> 7) * ((signed long int)dig_H1)) >> 4)); v_x1 = (v_x1 < 0 ? 0 : v_x1); v_x1 = (v_x1 > 419430400 ? 419430400 : v_x1); return (unsigned long int)(v_x1 >> 12); } ``` i2c读写接口封装 ```c static int read_bme280_reg(rt_uint8_t reg_addr, rt_uint8_t *data, rt_uint8_t len) { struct rt_i2c_msg msgs[2]; msgs[0].addr = BME280_ADDR; msgs[0].flags = RT_I2C_WR; msgs[0].buf = ®_addr; msgs[0].len = 1; msgs[1].addr = BME280_ADDR; msgs[1].flags = RT_I2C_RD; msgs[1].buf = data; msgs[1].len = len; if (rt_i2c_transfer(i2c_bus, msgs, 2) == 2) { return RT_EOK; } else return -RT_ERROR; } static int8_t write_bme280_reg(uint8_t reg, uint8_t *data, uint16_t len) { rt_uint8_t tmp = reg; struct rt_i2c_msg msgs[2]; msgs[0].addr = BME280_ADDR; /* Slave address */ msgs[0].flags = RT_I2C_WR; /* Write flag */ msgs[0].buf = &tmp; /* Slave register address */ msgs[0].len = 1; /* Number of bytes sent */ msgs[1].addr = BME280_ADDR; /* Slave address */ msgs[1].flags = RT_I2C_WR | RT_I2C_NO_START; /* Read flag */ msgs[1].buf = data; /* Read data pointer */ msgs[1].len = len; /* Number of bytes read */ if (rt_i2c_transfer(i2c_bus, msgs, 2) != 2) { return -RT_ERROR; } return RT_EOK; } ``` `init_bme280`用于初始化i2c设备 ```c static int init_bme280(void) { i2c_bus = (struct rt_i2c_bus_device *) rt_device_find(BME280_I2C_BUS_NAME); if (i2c_bus == RT_NULL) { rt_kprintf("can't find %s device!\n", BME280_I2C_BUS_NAME); return RT_ERROR; } rt_uint8_t data; int size = read_bme280_reg(0xD0, &data, 1); rt_kprintf("bme280 device id : %x\n", data); uint8_t osrs_t = 1; //Temperature oversampling x 1 uint8_t osrs_p = 1; //Pressure oversampling x 1 uint8_t osrs_h = 1; //Humidity oversampling x 1 uint8_t mode = 3; //Normal mode uint8_t t_sb = 5; //Tstandby 1000ms uint8_t filter = 0; //Filter off uint8_t spi3w_en = 0; //3-wire SPI Disable uint8_t ctrl_meas_reg = (osrs_t << 5) | (osrs_p << 2) | mode; uint8_t config_reg = (t_sb << 5) | (filter << 2) | spi3w_en; uint8_t ctrl_hum_reg = osrs_h; write_bme280_reg(0xF2, &ctrl_hum_reg, 1); write_bme280_reg(0xF4, &ctrl_meas_reg, 1); write_bme280_reg(0xF5, &config_reg, 1); readCalibrationData(); return RT_EOK; } ``` 将BME280的设置当作一条命令来执行 ```c void run_bme280() { bme280_thread = rt_thread_create("bme280", bme280_entry, RT_NULL, 1024, 16, 20); if(bme280_thread != RT_NULL) { rt_thread_startup(bme280_thread); } } MSH_CMD_EXPORT(run_bme280, run bme280); ``` #### 整合代码 以下代码经过测试,可以实现本次实验的所有功能 ```c #include
#include
#include "ssd1306.h" #define LED_PIN ((0*32)+10) #define BME280_I2C_BUS_NAME "i2c1" #define BME280_ADDR 0x76 #define SIZE 50 static struct rt_i2c_bus_device *i2c_bus; static rt_thread_t bme280_thread = RT_NULL; static unsigned long int hum_raw,temp_raw,pres_raw; static rt_uint8_t data[8]; static signed long int t_fine; static uint16_t dig_T1; static int16_t dig_T2; static int16_t dig_T3; static uint16_t dig_P1; static int16_t dig_P2; static int16_t dig_P3; static int16_t dig_P4; static int16_t dig_P5; static int16_t dig_P6; static int16_t dig_P7; static int16_t dig_P8; static int16_t dig_P9; static int8_t dig_H1; static int16_t dig_H2; static int8_t dig_H3; static int16_t dig_H4; static int16_t dig_H5; static int8_t dig_H6; static signed long int temp_cal; static unsigned long int press_cal,hum_cal; static double temp_act; static double press_act; static double hum_act; static char buffer[SIZE]; static signed long int calibration_T(signed long int adc_T) { signed long int var1, var2, T; var1 = ((((adc_T >> 3) - ((signed long int)dig_T1<<1))) * ((signed long int)dig_T2)) >> 11; var2 = (((((adc_T >> 4) - ((signed long int)dig_T1)) * ((adc_T>>4) - ((signed long int)dig_T1))) >> 12) * ((signed long int)dig_T3)) >> 14; t_fine = var1 + var2; T = (t_fine * 5 + 128) >> 8; return T; } static unsigned long int calibration_P(signed long int adc_P) { signed long int var1, var2; unsigned long int P; var1 = (((signed long int)t_fine)>>1) - (signed long int)64000; var2 = (((var1>>2) * (var1>>2)) >> 11) * ((signed long int)dig_P6); var2 = var2 + ((var1*((signed long int)dig_P5))<<1); var2 = (var2>>2)+(((signed long int)dig_P4)<<16); var1 = (((dig_P3 * (((var1>>2)*(var1>>2)) >> 13)) >>3) + ((((signed long int)dig_P2) * var1)>>1))>>18; var1 = ((((32768+var1))*((signed long int)dig_P1))>>15); if (var1 == 0) { return 0; } P = (((unsigned long int)(((signed long int)1048576)-adc_P)-(var2>>12)))*3125; if(P<0x80000000) { P = (P << 1) / ((unsigned long int) var1); } else { P = (P / (unsigned long int)var1) * 2; } var1 = (((signed long int)dig_P9) * ((signed long int)(((P>>3) * (P>>3))>>13)))>>12; var2 = (((signed long int)(P>>2)) * ((signed long int)dig_P8))>>13; P = (unsigned long int)((signed long int)P + ((var1 + var2 + dig_P7) >> 4)); return P; } static unsigned long int calibration_H(signed long int adc_H) { signed long int v_x1; v_x1 = (t_fine - ((signed long int)76800)); v_x1 = (((((adc_H << 14) -(((signed long int)dig_H4) << 20) - (((signed long int)dig_H5) * v_x1)) + ((signed long int)16384)) >> 15) * (((((((v_x1 * ((signed long int)dig_H6)) >> 10) * (((v_x1 * ((signed long int)dig_H3)) >> 11) + ((signed long int) 32768))) >> 10) + (( signed long int)2097152)) * ((signed long int) dig_H2) + 8192) >> 14)); v_x1 = (v_x1 - (((((v_x1 >> 15) * (v_x1 >> 15)) >> 7) * ((signed long int)dig_H1)) >> 4)); v_x1 = (v_x1 < 0 ? 0 : v_x1); v_x1 = (v_x1 > 419430400 ? 419430400 : v_x1); return (unsigned long int)(v_x1 >> 12); } static int read_bme280_reg(rt_uint8_t reg_addr, rt_uint8_t *data, rt_uint8_t len) { struct rt_i2c_msg msgs[2]; msgs[0].addr = BME280_ADDR; msgs[0].flags = RT_I2C_WR; msgs[0].buf = ®_addr; msgs[0].len = 1; msgs[1].addr = BME280_ADDR; msgs[1].flags = RT_I2C_RD; msgs[1].buf = data; msgs[1].len = len; if (rt_i2c_transfer(i2c_bus, msgs, 2) == 2) { return RT_EOK; } else return -RT_ERROR; } static int8_t write_bme280_reg(uint8_t reg, uint8_t *data, uint16_t len) { rt_uint8_t tmp = reg; struct rt_i2c_msg msgs[2]; msgs[0].addr = BME280_ADDR; /* Slave address */ msgs[0].flags = RT_I2C_WR; /* Write flag */ msgs[0].buf = &tmp; /* Slave register address */ msgs[0].len = 1; /* Number of bytes sent */ msgs[1].addr = BME280_ADDR; /* Slave address */ msgs[1].flags = RT_I2C_WR | RT_I2C_NO_START; /* Read flag */ msgs[1].buf = data; /* Read data pointer */ msgs[1].len = len; /* Number of bytes read */ if (rt_i2c_transfer(i2c_bus, msgs, 2) != 2) { return -RT_ERROR; } return RT_EOK; } static void readCalibrationData() { uint8_t data[32]; read_bme280_reg(0x88, data, 24); read_bme280_reg(0xa1, data + 24, 1); read_bme280_reg(0xe1, data + 25, 7); dig_T1 = (data[1] << 8) | data[0]; dig_T2 = (data[3] << 8) | data[2]; dig_T3 = (data[5] << 8) | data[4]; dig_P1 = (data[7] << 8) | data[6]; dig_P2 = (data[9] << 8) | data[8]; dig_P3 = (data[11]<< 8) | data[10]; dig_P4 = (data[13]<< 8) | data[12]; dig_P5 = (data[15]<< 8) | data[14]; dig_P6 = (data[17]<< 8) | data[16]; dig_P7 = (data[19]<< 8) | data[18]; dig_P8 = (data[21]<< 8) | data[20]; dig_P9 = (data[23]<< 8) | data[22]; dig_H1 = data[24]; dig_H2 = (data[26]<< 8) | data[25]; dig_H3 = data[27]; dig_H4 = (data[28]<< 4) | (0x0F & data[29]); dig_H5 = (data[30] << 4) | ((data[29] >> 4) & 0x0F); dig_H6 = data[31]; } static int init_bme280(void) { rt_uint8_t data; int size = read_bme280_reg(0xD0, &data, 1); rt_kprintf("bme280 device id : %x\n", data); uint8_t osrs_t = 1; //Temperature oversampling x 1 uint8_t osrs_p = 1; //Pressure oversampling x 1 uint8_t osrs_h = 1; //Humidity oversampling x 1 uint8_t mode = 3; //Normal mode uint8_t t_sb = 5; //Tstandby 1000ms uint8_t filter = 0; //Filter off uint8_t spi3w_en = 0; //3-wire SPI Disable uint8_t ctrl_meas_reg = (osrs_t << 5) | (osrs_p << 2) | mode; uint8_t config_reg = (t_sb << 5) | (filter << 2) | spi3w_en; uint8_t ctrl_hum_reg = osrs_h; write_bme280_reg(0xF2, &ctrl_hum_reg, 1); write_bme280_reg(0xF4, &ctrl_meas_reg, 1); write_bme280_reg(0xF5, &config_reg, 1); readCalibrationData(); return RT_EOK; } static void bme280_entry(void* paremeter) { init_bme280(); while(1) { read_bme280_reg(0xf7, data, 8); pres_raw = (data[0] << 12) | (data[1] << 4) | (data[2] >> 4); temp_raw = (data[3] << 12) | (data[4] << 4) | (data[5] >> 4); hum_raw = (data[6] << 8) | data[7]; temp_cal = calibration_T(temp_raw); press_cal = calibration_P(pres_raw); hum_cal = calibration_H(hum_raw); temp_act = (double)temp_cal / 100.0; press_act = (double)press_cal; hum_act = (double)hum_cal / 1024.0; rt_memset(buffer, SIZE, 0); rt_snprintf(buffer, SIZE, "Temp : %d'C\r\n",(int)temp_act); ssd1306_SetCursor(2, 26); ssd1306_WriteString(buffer, Font_6x8, White); rt_memset(buffer, SIZE, 0); rt_snprintf(buffer, SIZE, "Humi : %d %\r\n",(int)hum_act); ssd1306_SetCursor(2, 26 + 10); ssd1306_WriteString(buffer, Font_6x8, White); rt_memset(buffer, SIZE, 0); rt_snprintf(buffer, SIZE, "Press : %d Pa\r\n",(int)press_act); ssd1306_SetCursor(2, 26 + 10 + 10); ssd1306_WriteString(buffer, Font_6x8, White); rt_thread_mdelay(500); ssd1306_UpdateScreen(); } } void run_bme280() { bme280_thread = rt_thread_create("bme280", bme280_entry, RT_NULL, 1024, 16, 20); if(bme280_thread != RT_NULL) { rt_thread_startup(bme280_thread); } } MSH_CMD_EXPORT(run_bme280, run bme280); int main(void) { i2c_bus = (struct rt_i2c_bus_device *) rt_device_find(BME280_I2C_BUS_NAME); if (i2c_bus == RT_NULL) { rt_kprintf("can't find %s device!\n", BME280_I2C_BUS_NAME); return RT_ERROR; } ssd1306_Init(); ssd1306_Fill(Black); rt_pin_mode(LED_PIN, PIN_MODE_OUTPUT); for (;;) { rt_pin_write(LED_PIN, PIN_HIGH); rt_thread_mdelay(500); rt_pin_write(LED_PIN, PIN_LOW); rt_thread_mdelay(500); } } ``` ## 实验效果 用窗口工具打开开发板对应的串口,命令行输入`run_bme280` ![命令行.png](https://oss-club.rt-thread.org/uploads/20240424/cc6cf5b66dad1248c7e8525ff3a877e6.png.webp) 效果如下,OLED实时展示当前环境的温度、湿度、大气压 ![实验效果.jpg](https://oss-club.rt-thread.org/uploads/20240424/5cbcae59f8d8284d4e4541acd0f2be76.jpg.webp) ## 总结 - 技术离不开应用、离不开生活,学习技术是为了更好的服务于社会 - NXP的硬件i2c比较复杂,官方的demo比较多、配置也复杂,理解起来确实有一点难度,我在用i2c-tool工具的时候遇到了一些问题,目前还在分析、定位中
0
条评论
默认排序
按发布时间排序
登录
注册新账号
关于作者
hywing
嵌入式系统开发工程师,从事物联网、工业自动化、汽车电子开发工作
文章
6
回答
3
被采纳
0
关注TA
发私信
相关文章
1
v4.1.1 ENV里使能SSD1306,需要包含_ansi.h头文件。找不到
2
使用ssd1306遇到的问题
3
U8G2 软件包单色0.9寸OLED屏驱动在 RT-Thread 移植问题
4
U8G2 软件包单色1.3寸OLED屏驱动在 RT-Thread 移植问题
5
使用 BME280 软件包,初始化失败
6
RT thread BME280 驱动
7
我用evk工具添加dhtxx的包显示如下错误
8
FRDM-MCXN947 DEBUG时候,突然烧录不进去了
推荐文章
1
RT-Thread应用项目汇总
2
玩转RT-Thread系列教程
3
国产MCU移植系列教程汇总,欢迎查看!
4
机器人操作系统 (ROS2) 和 RT-Thread 通信
5
五分钟玩转RT-Thread新社区
6
【技术三千问】之《玩转ART-Pi》,看这篇就够了!干货汇总
7
关于STM32H7开发板上使用SDIO接口驱动SD卡挂载文件系统的问题总结
8
STM32的“GPU”——DMA2D实例详解
9
RT-Thread隐藏的宝藏之completion
10
【ART-PI】RT-Thread 开启RTC 与 Alarm组件
热门标签
RT-Thread Studio
串口
Env
LWIP
SPI
AT
Bootloader
Hardfault
CAN总线
FinSH
ART-Pi
USB
DMA
文件系统
RT-Thread
SCons
RT-Thread Nano
线程
MQTT
STM32
RTC
FAL
rt-smart
ESP8266
I2C_IIC
WIZnet_W5500
UART
ota在线升级
PWM
cubemx
freemodbus
flash
packages_软件包
BSP
潘多拉开发板_Pandora
定时器
ADC
GD32
flashDB
socket
中断
Debug
编译报错
msh
SFUD
keil_MDK
rt_mq_消息队列_msg_queue
ulog
C++_cpp
at_device
本月问答贡献
踩姑娘的小蘑菇
7
个答案
3
次被采纳
a1012112796
13
个答案
2
次被采纳
张世争
9
个答案
2
次被采纳
rv666
5
个答案
2
次被采纳
用户名由3_15位
11
个答案
1
次被采纳
本月文章贡献
程序员阿伟
9
篇文章
2
次点赞
hhart
3
篇文章
4
次点赞
大龄码农
1
篇文章
5
次点赞
RTT_逍遥
1
篇文章
2
次点赞
ThinkCode
1
篇文章
1
次点赞
回到
顶部
发布
问题
投诉
建议
回到
底部